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Summary

Deconvolution and estimation of transfer function phase and

coefficients for nonGaussian linear processes

NonGaussian linear processes are considered. It is shown that

the phase of the transfer function can be estimated under broad condi-

tions. This is not true of Gaussian linear processes and in this sense

Gaussian linear processes are atypical. The asymptotic behavior of a

phase estimate is determined. The phase estimates make use of

bispectral estimates. These ideas are applied to a problem of decon-

volution which is effective even when the transfer function is not

minimum phase.
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1. Introduction, Assume that the random variables
Vert =.ee -1,0,1,... are independent and identically distributed with
‘ mean zero, Evt = 0, and variance one Evt2 =1. Let {aj} be a sequence
1 ‘ of real constants with
E ®
% a.2< ®
E ) 3 . J
b
i Consider the linear process generated by {aj} and {vt}
F -]
x, = z a.v, . . (1)
] t T t-)
1 .
i Let ofz) = Z asz be the z-transform corresponding to the process {xt }.
J

Then
; c.(e-lx)=§: o, e A ;
R j J ‘g
B is called the frequency response function or transfer function, We are

concerned with the estimation of c1(e'1 k) on the basis of observations
L | only on the process {xt} ;

The spectral density of {xt} is

B = - late”t*) | 2

T INE A A a

In the Gaussian case (when {xt} is normally distributed) the full proba-

bility structure of [xt} is determined by f(1) or equivalently by the

g modulus of a(e'lx -“‘)l . The phase information in u(e-n) is

)y |ate




not identifiable in the Gaussian case,

If uf(z) is a rational function

_ A(z)
Q(Z) = B(Z)
with A(z), B(z) polynomials
q
k
A(z)=?az, a, # 0,
KSo 0
P
B(z) = z bkzk, b0=l.
k=0

the process {xt} is a finite parameter autoregressive moving average

process, that is,

q
bjxt-j = Z a'kvt-k . {2)

1f {xt} is a Gaussian process satisfying (2), then any root zj #0 of A(z) or
B(z) can be replaced by its conjugated inverse z-il without changing the proba-
bility structure of {xt}, This follows since leix-zol = lzol -2 le“‘- z(')1 | .

If all the roots are distinct there are ZP+q ways of specifying the roots
without changing the structure of {xt} . To ensure unique determination of
the coefficients a, and bj of (2) (since there is a different specification of
these coefficients corresponding to each of the 2p+q root specifications) in the

Gaussian case, it is the custom to assume that all the roots of A(z) and B(z)

are outside the unit circle |[z| < 1 in the complex plane,
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However, for a nonGaussian stationary process satisfying (2) (in
which case the independent vt's are nonGaussian) the different ZP+q
specifications of roots mentioned above generally correspond to different
probability structures and different processes. As a simple example,

consider the moving average

with the roots o A(z) 2and 3, and the moving average

yt = 3vt - 'Iv';_l + th-Z

having a polynomial A(z) with roots 1/2 and 3. Both {xt} and {yt}
have the same spectral density but if the independent random sequence

{vt} is exponentially distributed, the marginal distributions of the {xt}
and {yt} sequences are different. In the problem of deconvolution where
one wishes to recover the process {vt} (assumed nonGaussian which is
most often the case in applications) in some sense, the proper specification
of roots (which are inside and which are outside) becomes crucial (see
Rosenblatt (1974)). There is a discussion concerning the distribution of
roots as related to prediction problems in Rosenblatt (1980).

There are results on the estimation of the coefficients a.j and bk
of (2) (corresponding to roots assumed outside the unit circle) in Box and
Jenkins (1976). In the Gaussian case these are essentially equivalent
asymptotically to maximum likelihood procedures. In the nonGaussian case

the computations are carried out as if the process were Gaussian, One has

L2
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a least squares but not a maximum likelihood solution in the nonGaussian
case. The coefficients estimated are those corresponding to roots outside

the unit circle even though the actual structure of the process may not be
one with all the roots outside the unit circle. Thus one will typically not be
able to resolve the actual structure using these procedures in the non-
Gaussian case. Of course, if one knows the actual nonGaussian distribu-
tion of the v_, one can use the maximum likelihood estimate or an asymp-
totically equivalent procedure to estimate the coefficients in (2) even if the
roots z, are not all outside the unit circle (see Bhasawa, Feigen and

Heyde (1975)). Higher order spectral methods discussed in the next section

do not require this knowledge. Our discussion follows that of Rosenblatt

(1980),

2, Higher order spectral method

Assume that {xt} is a linear process (see (1)), with the independent
random variables {vt} nonGaussian and having all moments finite. Actu-

ally we only require that some cumulant Y of order k> 2 be nonzero.

Also let
215l 1l <e
j

and assume

a(e-“‘) £0

for all A. We will see that a(e-lk) is essentially identifiable (as con-

trasted with the Gaussian case) if one only observes the process [xt} .




Since the vt's are assumed nonGaussian with all moments finite,

there must be a cumulant of Ver Yy # 0 of smallest subscript k> 2. The

kth order cumulant spectral density of the process [xt} is given by

. 1
B bk(xl, oo )‘k-l) = K1 . Z . cum(xt.
(ZTT) Jlinovle-l

» k-1
2 exp ( 2 ijsxs> (3)

s=1

X . 1e0esX, ., )
t:'l-_)l t+Jk-1

E (2m)
g Let
h( 1) = arg {a(e-d) e %
| a1}
Then
k L3 3
{Ig(:)l} Y © (2m° bk(O.....O)/{f(O)}z ,
and

h()\l)+--- +h()\k_l) oh(kl+-.- +xk-l
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since
h(-1) = -h(}) .
Further
’ ’ . 1
h'(0)-h' (1) -Zu:xo 75 (B + (k-2 h(8)-h(} + (k-208)]} . (5)
Now
>‘ ’ ’
h(}) = f {h'(u) - h"(0)}du + c =hl(x) +ch
0
where

c = h'(0).

In particular

h() =hl(TT) tcm,

Since the aj's are real we must have

h(m) =km
for some integer k., Set ]
h‘(ﬂ)/n = 8
Then
h(m) =km=(8+c)m
so that

c=k-8 ,

The integer k cannot be determined without further assumptions since it
corresponds to reindexing or subscripting the vt's. The sign of afl) is

also intrinsically undecidable since one can multiply o.j's and vt's by (-1)

CHTNER 1 AP0 YOTOTRAA I 1 A APy < TN e o



K without changing the observed process {xt} . Thus, under the conditions

specified above for a nonGaussian linear process {xt} , cx(e-1 )‘) is

; identifiable up to the integer k and the sign on the basis of observations

on {xt} only and is given by

ate ity = 2| M Zexp fin(n) ]

with

A
f {h'(w) - h"(0) }du + eA (6)
0

A'l h( x)

h ()

o

A

h (}) -

Notice that hl(k) can actually be computed.

3. Phase estimation and convergence of estimates
There are many discussions concerned with the estimation of the * '
second order spectral density f()) (see Anderson (1971) or Jenkins and

Watts (1968)). We will concentrate on the estimation of h(\). For

simplicity of discussion we will assume that the third order cumulant vy 3

% ol et AR .“

of v, is nonzero. The program in the higher order case can be carried

EN t

‘ out in a similar manner. Equation (5) becomes

%

h’(0) - h’(A) = lim — {h(A) + h(A) - h(} +4)}
..;; A A

i -0

:

2 when k=3, For (4) we find that up to a sign

i
-4 h(k)+h(A)-h(k+A)=arg{b3()\,A)} .
i

From this point on we will drop the subscript and understand that we are

[N
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dealing with the bispectral density b(A,u). Let nb( A, 4) be an estimate

of b(}, n) based on a sample of size n. Then an estimate of

(A, u) =arg b(i, n)

kil e abanctdng. T

can be given by

j en(x, {) = arctan{Im nb()\.u)/Re nb“" u))

We note that for a complex number

z =x +iy = rele
with r = |z| and ® = arctan(y/x) a principal value determination, one has
% _x 8%y
oy 1_2 9x r2
% _ 2y 2% 2y
Bxa r4 ayz r4
and
. 2% _1 a1z’
: bxoy 2 4 -~ 3tz
N r r r r
x) Therefore

| o (hou) - 0(h, ) = - 2 BlyRe b(y, 1) - Reb(, W)
| {b(x, w

+ Re b(h, u)

! 5 {Im _b(X, u) - Im (X, u)}
3 [b(x, Wi

+op(nb()\,u)-b()\.u)) . (7)




Let us consider estimating

h (m)
1

h(A) =h1()\) -

Set A =A(n), kA =), andlet A =A(n)-> 0 as n-»>=», Assume for con-
venience that b(0,0) is positive. A simple modification indicated later

takes care of the case in which b(0,0) is negative, Now

hl()‘) = h(}) - h'(0)A

= h(kAd) - h(a) kd
A
k-1
= - Z {h(j&) +h(8) - h((j+1)D) }
ji=1 !
!
k-1 |
= - z arg b(jo,4) .
i=1
This suggests
: k-1
- H Q) =- Z arg nb(JA-A) (8)
B . J = 1
{! as an appropriate estimate of hl()\). Assume that sixth moments are finite
and that bispectral estimates nb()\ » 1) of the type obtained by weighted
3 averages of 3rd order periodogram values (see Brillinger and Rosenblatt
j (1967)) are employed. It has been shown in the paper just cited that if the
4
3 bispectral density is continuously differentiable up to second order and one
has a symmetric bandlimited weight function with bandwidth A, that then

11
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E nb()\ »M) - b(d,u) ~ff(uD>\ + VDH)Z b(A,u) wlu, v)dudvA 2+ o(A z) (9)
and

o % b(x,u) ~ KA I LY w)
n

A™n

[wz(u.v)dudv , (10)

2
if A n»® asn-+», A(n)> 0. Here D)\ and Du represent partial derivatives
with respect to A and p respectively. Further estimates nb( A,u),
nb(l' M), 0spu<i, 0% uw' < 2/ » are asymptotically uncorrelated as n-» =

if (A,u) and ()\l.ul) are distinct, Using (7) and (8) we can write

H_ (W) -hl(l)=Rn(k)+op(Hn(7\) - h () (11)

and show by employing (9) that

A

ER (1)) ~f - f.’l‘_b‘l‘_'%_) [AD % Re b(u,0) + 2B D D Re b(u, 0)
n | b(u, 0)] u uv
0
+ CDVZ Re b(u, 0)] dua
A
+f Re bW D) [AD 2 Im b(u, 0) + 2BD_D._ Im b(u, 0)
2 u u v
0 | b(u, 0)|
+ CDVZ Im b(u, 0)] du &
+ o(A)

where A, B, and C are the second moments of the weight function w of

the bispectral estimates
A = fuzw(u. v) duav . B = fuvw(u. v)dudv

C =jv2w(u.v)dudv

12




Further, by using (10) it follows that

min(l ’ u)

cov(R_(A),R (u) = X9 (£2)/ [b(w 0] %} du wiw,v)dudv.  (12)

Ano

Assuming the existence of all moments and (11), one can show that Hn(“

is asymptotically normal with mean hl(l) and variance given by (4 2). The

mean square error of Rn(M is of order

and the optimal rate of convergence is n 2/5 when A(n) ~ n-”5 .
Assume that the bispectral density is continuously differentiable

up to third order. Further let the weight function of the estimate be band-

limited with first and second order moments zero. Such a weight function

cannot be nonnegative everywhere, Then

E _bih,u) - b0, ) = 0(a>).

The mean square error of Rn()\) is of the order

The optimal rate of convergence is then 1'1-4/7 with A(n)~ n'll7 .
Generally we will estimate hl(l) and hence h()) for a whole range
of X values. The sign of b(0,0) may not be positive. We estimate it by

noting the real part of ﬂl:x(A,A). If it is negative we multiply all nb(jA.A)

13
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with a minus sign. The estimate Hn(l) is then given by

k-1

H (A) = - jzl arg{- nb(jA.A)}

e T
e et et

4, Computations using spectral methods
: We remark on the computational aspect of phase estimation of
C c.(e-i )‘) and give a few illustrative examples to indicate its effectiveness.
Given a sample {xt} of size n=kN, we center and normalize it so
that it has mean zero and variance one., Break up the sample into k dis-
joint subsections of equal length N so that the variance of the bispectral
estimate from each section is not too large. Then choose a grid of points

)‘j =j& in (0, 2m), j=1,...,M, & = 2nL/N, Though the symmetry condi-

tion h(A) = -h(-\) implies that one need only deal with A in (0,7), there
3 may be some advantage in considering X € (0, 21m). We will comment on ‘

this point later on. Form the bispectral estimate Nb(jA,A) of the type

.Y

discussed above with a weight function of bandwidth & from each subsection.

Average the estimates from the different subsections so as to arrive at a

Jf P it vgdy Ll

final estimate 1_lb(_jA,A). A detailed discussion of this kind of algorithm can

be found in Helland and Lii (1981). Compute en(j) = arg {nb(jA,A)} + 2k
j’ where the integer k is chosen to ensure continuity of Hn(l A) = Hn()‘l) =
!-

 d - 'z:j =1 en(j), £=2...,M+]l (neighboring values are as close to each other

as possible). Since the upper index is £-1 we start with £=2. Since

4 h(0) =0 one sets Hn(O) =0 and estimates Hn(A) = Hn(ll) by an interpolation

between 0 and Hn(kz). \2 = 2A, Hn(n) is also computed by an \

14




interpolation procedure. This amounts to a complete procedure for

estimating h(1).

Since
2m
_ 1 ik, ik)
Xy = >m { afe ) dax
and estimate &k of a, isgiven by
21
! - 1 A -ll lk)\
a, = 2—nf afe ) dx
0
M+1 (13)
H (ﬂ) )}
E 2TT(M+2) z ./Zﬂf()\)expl (H (N, )- )\ + ki,

and this computation can be carried out by using the fast Fourier transform,

The o,'s are real numbers and so the a

!
K g 8 may or may not be

real. If the symmetric property of f(1) and h()) is used and the integra-

. tion is carried out from -Tto T almost real &k's will be obtained. The

imaginary part of the a,'s will only be the size of rounding errors. In

k

practice there is no indication of how good or bad the estimates are apart

RN R 905

from asymptotic results. In actual practice {jA};\i;l may not be sym-
metric about 7, If the estimates Hn()‘j) are reasonably good the estimated
&j's from (13) should still be almost real. The size of the imaginary part
reflects the level of noise. When the estimates Hn()‘j) are not good the

imaginary part of the 4 's becomes comparable to (or larger than) its real

k

part. This can serve as a direct indication of the quality of the estimation.

15

o a1 SN




- 9 o gy o o]

If the linear process is one-gided with a finite number of parameters

one has a moving average of order q

q
x, = jZo aj Veoj ! % £0
We could estimate a(z) = Z?=O a 23 by a(z) = Z?=0 &j 23 . In deconvolu-
tion we try to recover the process {vt} ' V= #ﬁ) x, (B is the backward

shift operator so that B x, = xt-j) by computing the approximation

-~

v If all the roots of a(z) (and Q(z)) are outside the unit circle

t a(B) ¢
(the frequency function is minimum delay) then &-l(z) has a one-sided
expansion Z;:O aj' Bj . In the computation, the series is truncated after a
certain number of terms, If some of the roots of a(z) have modulus less
than one we can still expand &-I(B) with a Laurent series expansion. Once
the roots of Qa(z) are computed, one can easily get the Laurent series
expansion of &-I(B) by partial fractions as described in Rosenblatt (1974)
or Henrici (1974).

Another way to find the inverse weights in deconvolution is to use

a least squares criterion as described in Wiggins (1978). Another general

method of deconvolution will be mentioned in the section on computation.

16
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5. Other possible computational methods

We briefly discuss two other possible methods of estimating the

coefficients of a nonGaussian moving average process of order q .
Q
x, = z a,v, . . 14
e 2% e (14)

As noted earlier, second order moments will not allow us to determine the

location of the roots of
q
a(z) = 2 a2l . (15)
j=0

Higher order moments will be used in the first method which makes use of

a least squares procedure. Assume Ev_= 0, Ev3 = y # 0, Consider

t t
2
e
(16)
= Z ol k= +1
_'Y .G,j j+k ] "q"q ....oq
J
Estimate 2 by
n
& =2 D x x?
k n K=1 t t+k
and solve the extremal problem
q 2
min z (Ek-yzal 3124-1() . a7)
aj k = _q l

There are q+2 unknowns a . .aq and y in (17). Due to the

0!--

17
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homogeneity of the aj's we have to normalize the problem appropriately;
all the aj's can be multiplied by a constant ¢ # 0 and Y can be divided by
c3 without changing (17). There are a number of ways of carrying out such (]
a normalization. One could set Evt3 =y = 1. Alternatively ag = 1 could
be the normalization condition. Some comments on the asymptotic distribu-

tion of the ¢, 's are given in Appendix 2.

k
The second method is a searching procedure. One uses a typical
second order method to estimate the roots of a(z), rj + j=1,...,9, assuming
all the roots have modulus greater than one. An accurate estimate of the
distribution of roots is obtained by taking the conjugated inverse of an
appropriate number of the rj's. Suppose all of the rj's are real and dis-
tinct, Then there are Zq possible sets of roots that give the same second
order structure. Each of these sets yields a distinct set of &j's which in
turn lead to a distinct set of the ck's. Choose the set of &j's which deter-

mine the set of ck's minimizing

among all the possible sets of {&j} . If some of the roots rj are complex,
the inverse complex conjugates are taken in pairs. If there are multiple
roots, the solution of roots in terms of coefficients is unstable, Some com-
ments on this question are made in Appendix 1. The initial set of coeffi-
cient estimates corresponding to roots all outside the unit circle can be

obtained by the method described in Box and Jenkins (1976). Alternatively,

18




one could try to obtain the roots directly by solving for the roots of the

polynomial :
pz) = 2 g(2)
. where
3 -1
g(z) = a(z) a(z )
:
q
f = z 8, 2)
i=q ?
' with ‘
: il TR e )
1
3
Saa
T 0+|j]
We estimate Bj by
4 n- |j
B =xll z *t %t + |
J £ J
A The roots of p(z) with modulus greater than one are the initial set of roots,
A
k!
4
4
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6. Examples

We will consider a few simple examples generated by Monte Carlo
simulation to illustrate the computation and to give a qualitative feeling of
the effectiveness of the theory. Details and possible ''fine tuning'' of the
computational method will be considered elsewhere.

We generate x =v. ta v , t=1,...,640 where

1Ve-1 T %2V 2
v, = vt' -1 and vt"s are independent exponentially distributed random

deviates with mean one obtained from the GGZEN subroutine in the inter-

national Mathematical and Statistical Library (IMSL). Then

Evt=0 , wWarly ¢ . @mv, =1 ,

3
Evt =2

40
We partition {xt }16:):1 into five sections, each of which has 128 points.
Compute the bispectrum estimate b( i) (JA b)), j=1,13; i=1,...,5, by

the algorithm described in Lii and Helland (1981). Here we set

n
A= 111%8' = 0, 442, Our final bispectrum estimate is
5
b ('AA):-I-zb(l (j6,8)
640721207 5 &L Y
Compute

én(j) = arg{l;n(jA,A)} {
= arctan(Im Gn(jA,A)/Re b_(i6,4))

by taking the principal value as well as

2,...,14 ,

-Hn(jA) = -Hn(lj) = iZl en(i) s J

20
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Let H(©)=H(Q,) =0 ,
n n 0
= -1
H (8)= H () =3HO),
=1
Hn(n) = Z[Hn(7A) + Hn(BA)]
=1[(H (3.093) + H (3.534)]
2 n n
and ¢=-H (m/m=-8§ .
n

Recall that ¢ is an estimate of

¢ = lim l_‘LA_Z = h’(0)

AsQ a

up to an integer. We will use ¢ = h(A)/A instead of h’(0) to compare
with ¢ in the following examples. From formula (9) we compute ak's.
A standard smoothed periodogram with uniform weights and bandwidth A

was used to compute fn()‘) as an estimate of the spectrum f(3) of {xt} (fn(O) is

obtained by a linear extrapolation). These examples are as follows:

Model: x =V, +a t-1 + Ve 2 with four cases spzcified given below:

1
Coefficients Roots
Case 0.0 al az r1 r,
1 1.0 -0,833 0.167 2,0 3.0
2 1.0 -2,333 0.667 0.5 3.0
3 1.0 -3.50 1.50 2.0 0. 333
4 1.0 -5,0 6.0 0.5 0. 333

21




Casel, c=1,29, ¢ =1,605

Len%t.;j Est, Argument A;yg‘g:;nt A"ga‘:"}ent Adjusted
) late™™")| Length  h(}) -H_(\) 8_(\) H () + &)
n n n

0. 0.3333 0,181 0. 0. 0. 0.
0.442 0,4194 0,399 0.5732 0. 3125 0. C. 3966
0.884 0.6509  0.617 0.8309 0.6249 0.6249 0.7933
1,325 0,9776 1,050 0.8428 1.3195 0.6945 0.8078
1.767 1.3393 1,452 0. 7180 0.9188 0.5994 0.9176
2,209 11,6685 1,663 0.5199 2.7462 0.8273 0. 7994
2,651 11,9032 1,715 0.2830 3,5893 0. 8431 0.6654
3.093  1,9990 2,241 0.0286 4.4842 0.8949 0.4795
3.53¢  1,9376 1,740 -0,2274 5.6009 1.1166 0, 0720
3,976 1,7307 1,702  -0.4697 6.2542 0.6534 0.1277
4,418 1,4176 1,455 -0.6788 7.1482 0.8939 -0,0571
4,860 110573 1,174  -0,8240 7.9014 0.7532 -0,1012
5,301 0,7172 0.655 -0,8502 8.1520 0. 2506 0.3573
5,743 0,4599 0,445 -0,6584 9.3127 1.1607 -0.0943
6.185 0,3377 0,235  -0,1461 9.4044 0.0917 0.5230

Gy = 0.9593, a, = -0,5816 , &3 = 0,1158

Here and from this point on all a

k

's are adjusted by sign and index shift.




Case 2, «c=-1,388, c = 0,4094

Argument Argument

Length Est. Argument by Sum at J Adjusted  n*
5 2 late ™ Length h(1) -H_(\) 8_ () Hn(>)+8x +(& - 1)x
0. 0.6667 0,473 0. 0000 0. 0. 0. 0.
i 0,442 10,8389 0,894 -0,6125  -0,2713 0. 0.0904 -0, 352 ,
; 0.884 1,3018 1,315 -1.0828 -0,5425 -0.5425  0,1808 -0,703 {
‘ 1,325 1,9553 1,888 -1,4915  -0,4851 0.0574 -0,0575 -1, 382
- 1.767 2.6785 2.748 -1.8895  -0,6904  -0.2053 -0,0331  -1,80
2.209 3,339 3.348 -2,2893  -0,6481 0.0423 -0,2563  -2.465
2.651 3.8064 3.520 -2.6920 -1,0097 -0.3615 -0,0756  -2.727
3,093 3.9980 3.809 -3,0966 -1,0884  -0.0787 -0,1778  -3,27
3,534 3,8752 3,951 -3,5014 -1,4842  -0.3958 0.0371  -3,497 3
3,976 3.4614  3.297 -3.9047 -1.6797  -0.1956  0.0518  -3.924 ]
4.418 2.8351 2,802 -4.3051 -1,5538 0.1259 -0.2550  -4,693
4.860 2,1146 2.168 -4.7031  -1,8428  -0.2890 -0,1469  -5,007
5.301 1,4344 1,429 -5,1070 -1.8785  -0.0357 -0.2921  -5,593
5.743 0.9199 0,93 -5.5558  -2,3478  -0,4693 -0,0037  -5,747
f 6.185 0.6755 0.443  -6,1366 -2.6185  -0.2706 0.0861  -6.099
¥ a. =0,7164 o, = -2.175 a, = 0,7605
' o ’ 1 ’ 37
3 As an indication of discretization error, notice that if we use the exact h()) and
;: la (c-i)‘)l instead of estimated ones, we get
g ao =0,9136 , aLl = -2,247, a3= 0.5977
}?
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Case 3. c=-0,613, ¢ =0,6363
Leng.t h Est. Argument A:f uSrunrint Arga‘:r?em Adjusted H,()

2 |aie-lxﬂ Length h(}) -H_(\) ¢ Hn(>)+8x $(c- 1)
0. 1,0000 0,055 0 0 0. 0 0.
0.442 1,2583 1,280 -0,2711 0,0062 0. 0.2749 -0,167
0.884 11,9527 2,505 -0.6843 0,0125 0.0125 0.5498 -0, 334
1,325 2.9330 2,922 -1,1592 0. 3266 0.3141 0.5168 -0.808
1,767 4.0178 4,386 -1,6448 0.5819 0.2553  0,5426 -1,224
2.209 5,0054 5,272 -2,1286 1.0098 0.4280 0, 3958 -1,813
2.651 5,7097 6.732 -2.6094 1,1805 0.1707 0.5062 -2, 145
3,093 5,9971 5,440 -3,0884 1.8244 0.6439  0,1435 -2.95
3,534 5.8129 6.670 -3,5672 2.1738 0.3494  0,0752 -3.459
3.976 5.1922 5,610 -4,0475 2.5575 0.3836 -0,0273 -4,003
4,418 4,2527 4.653 -4,5306 2.8902 0.3328 -0,0790 -4,497
4,860 3,1720 3,040 -5,0162 2,9963 0.1061  0,0961 -4, 764
5,301 2.1516 2,630 -5,4959 3.3573 0.3610  0,0161 -5,215
5,743 1,3799 1,456 -5,9306 3. 3021 -0.0552 0, 3525 -5, 391
6.185 1,0132 0,282 -6.2334 3.3388 0.0367  0,5970 -5,588

ao =0,7561, a, =-3,334, & =1,778

1
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0.760 -12,2239 -6,8955 -0.1060

Case.4, ¢ =-3.29, c - -1,18
Ler_g‘.‘h Est, Argument Arbg;u;s:xt Arf;";ent Adjusted Hn( 2
A late ™! Length  h(\) “H ) e () H ()43 +(E - 21
‘ 0. 2.0000 0,969 0 0 0. 0 0.
0.442 2.5167 2,403 -1.4567 0, 0542 0. -0.5757  -1,4597
0.884 3.9053  3.837 -2.598l 0.1085 0.1085  -1.1514  -2.9194
1.325 5.8659 5.832 -3.4935  -0.5056  -0.6140  -1.0589  -3.7089
1,767 8.0356 6,112 -4.2523  -1,0588  -0.5533  -1.0270  -4.561
? 2.209 10,0109  9.601 -4.9377  -1.7068  -0.6480  -0.9006  -5.3186
A 2.651 11,4194 10,311 -5.5844  -2,5605  -0.8537  -0.5683  -5.8903
3.093 11,9942 10.165 -6.2136  -3.2706  -0.7101  -0,3797  -6.5657
3,534 11,6258 10,822 -6.8412  -4.1459  -0.8753  -0.0259  -7.0939
_ 3,976 10.3843  9.952  -7.4825  -4.9293  -0.7834  0.2360  -7.716
’ 4.418 8.5055 6,902 -8.1569  -5,6188  -0.6895  0,4040  -8.432
4,860 6.3440 5,925 -8.8953  -6.0445 -0, 4257 0.3083  -9,412
5,301 4.3033 4,360 -9.7527  -6.6180  -0.5735  0.3603 -10.242
5.743  2.7597 2.560 -10.8280  -6.7895  -0.1716 0.0104 -11,495
3 6.185  2.0265 -0.4051 -12.775

2
with roots —

G, =0.903, &

1

= -3,904, G =4.966

2

When we increase the number of parameters to four, we observe qualita-

X

t

1
3 2,

speaking, the instability is increased,

5=z, 4.0, we get:

5 ’

= vt - 4,25 vt-l

+ -
4, 75 Ve 0, 938 vt

-2

25

tively the same type of result as in the three parameter case,

-1

But generally
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We give one evample: the model is
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c = -3.6887, c = -1,825

Argument Argument

Leng.th Est, Argument by Sum by J Adjusted Hn()‘)
»  lae ™| Length  hQ\) “H_ () 6 () H 0)+8 +@ - 22 |
n n n | ;
0. 0.5625 0. 0. 0, 0. 0. 0. E
0.442 0,9470 0,925 -1,6304  -0,3495 0. -0.4569 -1, 34l
0.884 2.0233 2,202 -2.6631  -0,6990  -0.6990  -0,9138  -2,682
1,325 3.7839 3.439 -3,4612 -1,1051 ~0.4062 -1,3140 -3,964
1.767 6.0495 6,768 -4,1782  -2.1441  -1.0389  -1,0814  -4,615
2,209 8,3719 8,149 -4,8647  -3.2201  -1.0760  -0,8118  -5,23
2.651 10,1662 11,574 -5,5391  -4,0550  -0.8349  -0,7832  -6,085
3,093 10,9296 10.548 -6.2089  -5,0367  -0.9818  -0,6079  -6,794 i.
3,534 10,4383 11,975 -6,8783  -6,4316  -1.3949  -0,0193  -7,087 g‘
3.976 8.8369 8,413 -7,5511  -7,2046  -0.7730  -0,0527  -8.005 ‘
4.418 6,5805 7,820 -8,2339  -8,1175  -0.9129 0.0538 -8, 782
4.860 4.2557 3,946 -8,9415  -8,8852  -0,7677 0,0152  -2,7u5 !
5,301 2,3572 2.518 -9,7138 -9 7556  -0.8704 0.0792 -10, 52
5,743 1,1270 1,160 -10,6702 -10, 0662 -0,3106 -0,4166 -11,9
6.185 0,5829 O, -12,1458 -10,7554  -0.6893  -0.5337 -12,0

&, =1.106, &, =-3.572, &, =4.293, &,=-0.9762
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These simple examples indicate that one can estimate the unknown
coefficients reasonably well and one is able to discriminate different
models even though they have the same spectral structure. The question
of determining how many roots are inside of a unit circle can be answered
very reliablv using this method. One simply takes the absolute value of an
estimate Hn(l) t c(®) of h(}) near X =27 and divides it by 2™, round-
ing the result to its nearest integer. This integer is the winding number
given by a(e-i)) which gives the number of zeros of a(z) inside of a unit
circle. One can see that this is clearly the case in all these examples,

Graphs 1 through 5 compare the theoretical h(A) with the estimate
obtained by using our techniques in the five successive cases considered.
Graphs 6 through 10 are concerned with deconvolution. We consider the
moving average

X, =V, - 2.333 V. + 0, 667 .

1 2

with the vt's independent exponential variables with mean one. The vt's

are generated as pseudo-random variates, F(x) is the exponential distribu-

tion function with mean one. Graph 6 is a plot of the sample distribution

function of the generated vt's and of F(x). Let a(B) =1-2,333B +0. 667 BZ.

{;t is obtained by truncating the exact deconvolution formula as applied to

the generated time series




Graph 7 has a plot of the sample distribution function of the \“rt's with F(x).

The estimated model (using our bispectral techniques) is

x, = 0.7164 v, - 2.175 A + 0.7605 Ve,

1 r
2 2
Let a(B) =0.7164 - 2,175B - 0.7605 B , Let v, = ‘(lB) X, with the same
a
truncation as that employed in (18). Graph 8 is a plot of the

sample distribution function of the ¥, with F(x). In these three graphs

t
a one sample 95% confidence band using the Kolmogorov-Smirnov statistic
is indicated. Graph 9 has plots of the sample distribution functions of the
Gt's and vt's respectively, Graph 10 plots the sample distribution functions

of the Gt's and the vt's. Two sample 95% confidence bands are given on
these two graphs.

A general way to find the deconvolution weights can be described

as follows. We have an estimate.

ae ) - Jarni 0) expli(H ) 4N .

o1 s s s
To find & (e 1)‘) we compute b(e 1)‘) =exp{-In(a(e 1)))}. Then

21

ka =*2—lﬂf b(e-ik)eik)‘ dA
0
give the coefficients of series expansion of a-l(e—i)) which are the weights
desired in deconvolution. This method is general. We do not require
knowledge of the order of the moving average process and there is no
need to compute the roots from the estimated coefficients and how the

roots are distributed is irrelevant.
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Appendix 1

In this appendix we consider the relationship between the coeffi-

cients of a polynomial and the roots of the polynomial, at least locally.

The polynomial is

PP
Z ajz‘]= ﬂ (z-zj)

i=o j=1

where the roots are zj ,J=1,...,p, and the coefficients aj ,J=0,1,...,p,

with ap =1, It is well known that

_ P
a, = {-1) zl...zp .

Let us consider the relationship between the differentials of the coefficients

aj and the differentials of the roots 2, . Now




, £=1,,..,p. Thus

o,
o
1
1
®

and this can be written in matrix notation as

da,p._1 dz1
da dz .
P-2 | - yv 2 :
dap_ 3 dz3
PN ) :
where
: -1 0 0 0
4 -a -1 0o o
3 U - p-1
‘ -2a -2 0
p-l
1
;1 L N )
and
3
‘
: 31
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}

; zl ZZ z3 L N ) Zn

P V =

i z.?. 2 2 2 *
H 1 zz z3 se e zn

' o w ®

U is a triangular nonsingular matrix and V is the Vander Monde matrix.

V is nonsingular as long as the roots z, are distinct,

el J 9 o s

X,

L

P
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Appendix 2

The object is to remark on some aspects of the agsymptotic behavior

of estimates of the ck's in the context of a general linear process, Let

- xt be a nonGaussian linear process (1) with

cum(v4) =y cum(v6) =y
t 4’ t 6 °

Ye " % o

For convenience we introduce

g, - cov(xt R Yt-u) ,

r,C cov(xt » X, _ ), :
1

hu = cov(yt , yt-u) . {

Consider the estimates

P
[1,- Y
[+ Y]

n
2 [
Mz
®
[
N
+
+1]

where
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NG daie. o

baleiaasiec gl ool

v

N

[P

cov(xt Yetar X1 Vo +b)

+
TeerSt-T+a-b  Bt-7-b Bt-1+a

+

cum(xt, X, y7+b) cum(yt+a)

+

cum(xt, Xoo yt+a) cum(yt+b)

+
cum{x, y ., X, Yr+p) *

Now
r =Za,a R
u : J J-u
J
YL
€ Y34j-' J o ju ?
2
h =Y Za.za.z +2(za.a. )
u 4 j o j-u 7 3 )
Further

- Z 2
cum(yt+a) = aj ,
j

2
cum(xt, Xoo Vo +b) Yy JZ aj aj b aj+ €-1) k(b,t-1) ,

- 2 - j
cum(xt, Xp s Yt+a) =Y, JZaj aj+a aj+(7-t) =kla,7-tr ,

2 2

= a
cumlx, Yiy0 X0 Yo4y) Y(,Z u Fut(r-t) Tuta Tutbt ('r-t)

* 4Y4 (Z auau"’(’f-t) ®ata Cutbt (T-t)) (Z %a au"‘ (T-t)*‘b-a)
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2 2
* 2Y3 (z au clu+(1’-1:) au+a) (Zau uu+ (t-'r)+a-b)

2 2
t2y 3 (Z c,'u uu+(t-‘r) au+b) (z au uu+(1’-t) *'b--z)

= k(a,b,t-T),

It is then clear that

l ‘ lim N cov(ga, gb) - 2 Ts “s+a-b ¥ z o-b Esta
| s s

No =
i tr, > (kib,s) +k@a,s)} + ) kia,b,s) .
. ) s
3
!
E’ Under the assumption that L | o.j | < = , with a truncation argument like
:

that employed in Anderson {1970), one can show that
/N (ga B ga)

are asymptotically normally distributed with covariance structure given

] by the preceding formula.

2 N

35




CASE 1

I 8
;
' o
k o
'=’|"_ ooy
o
o
"
]
o
; I
o-—"?ﬂ
=
LJ
. %
<% o8 :
g | .. 1
A <'-'
*
S
| -
d t]
.
o
§ T
]
o
{ S
5 e
b T T T T T T T 1
0.00 C.E8 1.77 2.65 3.54 4.42 5.30 6.19

FREQUENCY

I
53
*

T L EE

LT R AT i T NG 5 0t PRI ¢ LRI g <



a1 B AN 8 P L S G gt i AR e M A 553300 A At bl b 122~ © = O

-3.00
e

1

-5.00

1

ARGUMENT
-7.00

-9.00

e
.00

-1

0C

Al
-\
j

G. 00 0.58 177 2 65 3. 54 4.4 5.30 5.1
FREQUENCY

 w—
9]
"
o
=3
N

<. b

-—= . .. ) . S e ————— - 34

LS e IR TP T e P W P, - -t (YIS ey - v




"
o (2]
" 4
s o
@)
! ~
hc
S
“ ]
; |
| gy
=
m w
\ >
o
” M A0y
, | T
w I
m W
4 A ~
| S :
1
i
u
i
M w0
[§ o]
H ﬁ'l
M Q
| |
(o]
[
. -— H T T T | u\oc
00°1 00" L - 00°¢- 00°G- 00" {- 00°6- 00°{1- 00-"¢€1t-
INFWNOYY -

T WL T L N A YOI WL St a1



CASE 4

M
o <
|7 i
w [}
~
O
o
=
<
w
-
™o
P
|¥8]
o
O
e
TR -
Ny
~
M~
w
w
=)
(@]
o
r T T T T T T .
001! 00t~ 00°¢- 00°G- 00" /- 00°6- Co- 1t~ oo.m_|0
INFWNOYY
it




CASE S

T
00°G-

oo.m..
IN3WNOYY

T

3.54

.65
FREQUENCY

1

2

.00

0

TR v - .
IS TN WAL >




m
|
:
1
]
i
i
!
i
!

60°¢4

00

SINIVA J7dWVS
00°6 00" v 00°¢ 00°¢C 06" | CO "0

1 1

T

0
044

Cv -’

T

09°0
ALl1118v8

030

co-

| JdSVO

" T .Il(‘l.1..300‘.."‘5

Graph 6

. = TR S S

et



GO

S3INTVYA ITdWVS

Y

7
z 00 006G oorv 00 _m oo.pc 00 oo..omu .m.
I3 g
i )
L ©
S
O
-
o0 1
. 0 4
&> y
OV w.
@ o0
:\ — ’
! 0[ - .H
e ‘
3~
/
/
X | ©
7, . »
o 3 m
__— ~ 2
| w
o
L




00"

00" ¥

1

V4 00wc 00"

)

SANIVA J1dWVYS

OOVm OOMN 00~

00-

N -2}
o £
3 :
(@]
o
| O
n
o
-
2O
oo
x>
89
]
—
OI
o
D
OIA
| O
el
o
O
O

PO WE TS 4




00

S

SANTIVA
OOFv

3 1dWVYS

I

OOVM 00°¢

v dSV3

T e

Ty gy

Graph 9




30

!

i

00°9

00" ¢

00

14

SANIVA 3TdWVS
00 ¢ 00°2

st e, st 5

+

ST BRI 7 A g TN HOITRE g -~

el e






